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We present a numerical study of sidebranching of a solidifying dendrite by means of a phase-field model.
Special attention is paid to the regions far from the tip of the dendrite, where linear theories are no longer valid.
Two regions have been distinguished outside the linear region: a first one in which sidebranching is in a
competition process and a second one further down where branches behave as independent of each other. The
shape of the dendrite and integral parameters characterizing the whole dendrite(contour length and area of the
dendrite) have been computed and related to the characteristic tip radius for both surface tension and kinetic
dominated dendrites. Conclusions about the different behaviors observed and comparison with available ex-
periments and theoretical predictions are presented.
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I. INTRODUCTION

The generation of dendritic patterns arises in different
nonequilibrium situations[1–8]. The case of dendrites ap-
pearing during the solidification of a melt has long provided
an archetypical example of a pattern forming system, in
which the underlying physics is well known. Nonetheless,
from the theoretical point of view it has posed a number of
nontrivial questions on the selection of the final growth
mode, which in a large amount has driven the research on the
effects of nonlinearities, anisotropies, and fluctuations in
interfacial pattern formation. These questions also have an
applied interest, since solidification is one of the most com-
mon methods to produce materials. It is well known that the
details of the dendritic pattern(and in particular its associ-
ated scales) appearing during growth determine the
microstructure of the grown solid, which in turn is respon-
sible to a large degree for its final(mechanical and electrical)
properties[9].

In this context increasing attention is focused on the shape
of the growing dendrite and on sidebranching[10–37], which
corresponds to the appearance and growth of secondary
branches at both sides of the dendrite. Sidebranching activity
shows different behaviors depending on the distance to the
tip of the dendrite[16,34,35]. In the zone closer to the tip
sidebranches are created as a convective instability of the
dendrite and grow linearly. Further down from the tip, side-
branches are usually much more developed and a competi-
tion process between branches takes place mediated by the
interaction between their diffused fields. Much further from
the tip, the competition has finished and the winner branches
grow as free dendrites while the growth of looser branches is
inhibited.

Many theoretical[12–20] and experimental[21–35] stud-
ies of the region close to the tip have been carried out in
recent years. A common point in the study of the linear re-
gion has been the characterization of sidebranching by

means of its amplitude and wavelength. The growth of side-
branches in the regions further down from the tip presents a
behavior very different from that of the linear regime. One
finds first a region where branches compete, interacting
through the expelled heat. This gives rise to an irregular
growth of sidebranches which is difficult to characterize by
their amplitude and wavelength, since these quantities are no
longer well defined outside the linear region. Experiments
carried out with different substances[25,26,30] have shown
that sidebranching in this region is self-similar and that
geometrical parameters can be scaled by the tip radiusR.
This nonlinear region and its associated self-similar growth
have their limits at distances to the tip of the order of the
diffusion length, i.e.,z/R!1/Pe[16], where Pe is the Péclet
number. Further down, sidebranches behave like dendrites
themselves.

The nonlinear region has been intensively studied in ex-
periments with xenon dendrites by Hürlimannet al. [26] and
with succinonitrile dendrites by Li and Beckermann[30,31].
In particular, the shape of the sidebranching envelope was
studied in Ref.[30] by measuring the distanceX from the
axis of the dendrite to the tip of active sidebranches(defined
as those branches longer than all the other branches closer to
the tip) versus the distanceZ to the tip along the axis of the
dendrite(see Fig. 1). Values ofX andZ were computed from
the image of the dendrite projected on a plane, and far from
the tip the relationX/R=0.668sZ/Rd0.859 was obtained.

An alternative set of integral parameters was proposed in
Refs. [26,30] in order to describe the complex shape of a
dendrite as a whole and the nonlinearities of dendritic solidi-
fication. Parameters characterizing independent parts of the
dendrite(e.g., amplitude and wavelength of the sidebranch-
ing) do not take into account the interaction of the side-
branches through the diffusion field. Nonlinear effects such
as, e.g., coarsening, make unclear which sidebranches should
be included in the measurement of the wavelength and which
others should not. Instead, the contour lengthU, the projec-
tion areaF, and the volume of a dendrite appear to be more
appropriate.

It was found in the earlier experimental work of Refs.
[26,30] that the projection area varied linearly with the con-*FAX: (34) 934137007; email address: ricard@fa.upc.es
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tour length and the corresponding slopeM satisfiedM /R
=const. Similar results were found in early simulations[36],
but this was shown to be an effect of reflecting boundary
conditions strongly affecting the dendrite[37]. This suggests
that the experimental observations could have been affected
by the diffusion field of other close dendrites or other grow-
ing morphologies. In more recent experimental[31] and nu-
merical [37] work it was obtained thatF / sURd was not a
constant in the nonlinear regime.

The projection area showed two different behaviors
[F /R2=0.847sZ/Rd1.598 for Z/R,30 and F /R2

=0.578sZ/Rd1.72 for Z/R.30] in three-dimensional succino-
nitrile dendrites[31]. However, in two-dimensional ammo-
nium bromide dendrites[22], the areaF was found to vary
over three orders of magnitude asZ1.5, as would have hap-
pened if the dendrites had had a smooth parabolic shape. As
regards the variation of the contour length with the distance
to the tip, only data corresponding to three-dimensional
dendrites are available, where two behaviors are distin-
guished [U /R=0.887sZ/Rd1.116 for Z/R,20 and U /R
=0.378sZ/Rd1.50 for Z/R.40] [31].

An additional question is whether strong undercooling
can produce qualitative changes in sidebranching character-
istics. It is well known that on increasing undercooling the
growth can switch from a regime dominated by surface ten-
sion to a regime dominated by kinetic effects. This was al-
ready predicted theoretically in Ref.[4]. When anisotropies
of both effects favor different directions, changes in the
growth directions of both dendrite and branches occur on
changing the undercooling. Even if these anisotropies are in
the same direction, the behavior of the tip radius and velocity
can present abrupt changes. Numerical evidence of such
changes can be found in Ref.[45].

In this paper we present a study of sidebranching by
means of a phase-field model for moving solid-liquid inter-
faces[38–44]. We consider sidebranching generated by se-
lective amplification of fluctuations near the tip of a free
growing dendrite. In particular, we focus on the nonlinear
zone, including both the region where competition occurs
and further down where sidebranches behave as free growing
dendrites. Characterization is performed by working out the
shape of the dendrite by means of its envelope, and calculat-
ing the integral parameters. We have varied undercooling in
a large range, in particular reaching relatively high values of
the undercooling. This has permitted us, on the one hand,
due to reduction in diffusion length, to access the region of
free growing sidebranches far from the tip, and, on the other
hand, to reach the kinetic regime of growth.

This paper is organized as follows. In Sec. II we present
the classical sharp-interface model that characterizes a solidi-
fication system, the phase-field model, and the numerical
procedure used in this work. In Sec. III we present the results
of simulations. We particularize the effect of varying under-
cooling, and the differences between different zones of the
dendrite. Detailed characterization of the whole dendrite is
performed by its shape and by computing the integral param-
eters. Finally, concluding remarks are presented in Sec. IV.

II. MODEL AND NUMERICAL PROCEDURE

The free solidification of a pure substance can be de-
scribed by the sharp-interface model[1], which relies on the
heat diffusion equation together with two boundary condi-
tions at the interface, namely, heat conservation and the
Gibbs-Thomson(local equilibrium) equation:

]T

]t
= D¹2T, s2.1d

Lyn = Dcpfs¹nTdS− s¹nTdLg, s2.2d

Tinterface= TM −
TM

L
fssud + s9sudgk − ynbksud. s2.3d

In these equationsT is the temperature(TM being the melting
one), D is the diffusion coefficient(D=k/cp, k being the heat
conductivity andcp the specific heat per unit volume), L is
the latent heat per unit volume,yn is the normal velocity of
the interface,¹n is the normal derivative at the interface
(S andL referring to solid and liquid, respectively), ssud is
the anisotropic surface tension(whereu is the angle between
the normal to the interface and some crystallographic axis),
and k is the local curvature of the interface.bksud is
an anisotropic kinetic term, introduced into the Gibbs-
Thomson equation(2.3) to account for a linear nonequilib-
rium correction.

The results of simulations presented below have been ob-
tained by means of a phase-field model. These kinds of
model have received increased attention during recent years
[44]. One of their main features is the introduction of an
additional nonconserved scalar order parameter or phase
field f, whose time evolution equation is coupled with the

FIG. 1. Example of dendrite obtained atD=0.575. DistancesZ
andX of active sidebranches used to characterize the shape of the
dendrite, and the integral parameters contour lengthsUd and surface
areasFd, are indicated.
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heat diffusion equation through a source term in order to take
into account the boundary conditions at the interface. The
phase field takes constant values in each of the bulk phases
(in our case,f=0 in the solid andf=1 in the liquid) chang-
ing continuously between them over a transition layer, the
interfacial thicknesse. The equations of the model are then
constructed in such a way that they converge to the sharp-
interface dynamics of Eqs.(2.1), (2.2), and(2.3) in the limit
of vanishinge. Hence this parameter controls the conver-
gence to the sharp-interface limit.

The corresponding equations for the time evolution of the
phase field and the dimensionless temperature can be written
in the following form [39]:

e2tsud
]f

]t
= fs1 − fdSf −

1

2
+ 30ebDufs1 − fdD

− e2 ]

]x
Fhsudh8sud

]f

]y
G + e2 ]

]y
Fhsudh8sud

]f

]x
G

+ e2 ¹ fh2sud ¹ fg, s2.4d

]u

]t
+

1

D
s30f2 − 60f3 + 30f4d

]f

]t
= ¹2u + csx,y,td,

s2.5d

whereusr ,td is the diffusion field andD=cpDT/L is the di-
mensionless undercooling. Lengths are scaled by some arbi-
trary reference lengthv, while times are scaled byv2/D. In
these equationsu is the angle between thex axis and the
gradient of the phase field.hsud=ssud /ss0d is the anisotropy
of the surface tension.tsud is given byscpD /Ld0dhsudbksud,
so the anisotropy of the kinetic term is given bytsud /hsud. b
is equal toÎ2v /12d0 and d0=cpTMss0d /L2 is the capillary
length.

A source of fluctuations is introduced through the additive
term c in the heat equation. It was demonstrated[20] that
sidebranching induced by this kind of noise qualitatively re-
produces the characteristics of the(thermodynamical) inter-
nal noise, which makes it appropriate for the study of side-
branching. In our two-dimensional simulations the noise
term is evaluated at each cellsi , jd of lateral sizeDx as Ir ij ,
where I denotes the amplitude of the noise, andr ij is an
uncorrelated uniform random number in the interval
f−0.5,0.5g. The phase-field model equations have been
solved on rectangular lattices using first-order finite differ-
ences on a uniform grid with mesh spacingDx. An explicit
time-differencing scheme has been used to solve the equation
for f, whereas for theu equation the alternating-direction
implicit method was chosen[46]. The kinetic term has been
taken as isotropic, which leads totsud=mhsud with constant
m. A fourfold surface tension anisotropyhsud=1
+g coss4ud has been considered.

The growth morphologies have been obtained by setting a
small vertical seedsf=0,u=0d in the center of the bottom
side of the system and imposingf=1 andu=−1 on the rest
of the system. Symmetric boundary conditions forf and u
have been used on the four sides of the system. Special care

has been taken to employ large enough system sizes to avoid
any influence of boundary conditions on the results presented
throughout this paper.

We have used a set of phase-field model parameters that
gives rise to a growing needle without sidebranching when
no noisesI =0d is added to the simulations. This assures us
that the sidebranching observed whenI Þ0 is not due to
numerical noise. The fixed parameters for all the simulations
have beenb=320,g=0.045,m=16, ande=3.75310−3. The
value ofD has been varied in the range 0.44–0.65. The noise
amplitude was kept constantsI =16d in all the simulations
and the time and spatial discretizations used wereDt=1.25
310−4 andDx=0.0125.

Under these conditions, the obtained morphologies were
dendrites with three main arms growing from the seed, one
in the verticalsyd direction and two in the horizontalsxd one.
We have focused on the sidebranches which grew perpen-
dicular to the vertical arm. Thus, in order to get rid of the
influence of the diffusion field of the horizontal arms on
these sidebranches, we have been forced to run long simula-
tions and only observe an area at a fixed distance to the tip.
In order to avoid working with unnecessarily large systems,
we have performed periodic shifts of the complete system, a
practice that has been checked to not affect the results of the
simulation. In Fig. 1 we show an example of a typical grown
dendrite.

III. RESULTS AND DISCUSSION

A first series of simulations was performed exploring the
effect of undercooling on the tip radius. This was measured
by computingR=fx/fyy at the tip of the dendrites[39]. The
aim was to identify different regimes of growth in a large
range ofD. In our case, anisotropy is only considered in
surface tension. Thus, when the undercooling is changed no
change in growth direction is expected although the behavior
of the tip radius and velocity may vary. In particular in the
surface tension controlled regime the tip radius should de-
crease(together with increase of tip velocity) by increasing
undercooling. On the contrary in the kinetic regime, with an
isotropic kinetic term, one expects larger tip radius at higher
velocities. In Fig. 2 is shown the behavior of the tip radius as
a function of the undercooling. A change of the behavior
around the value 0.575 can be clearly observed. Thus, by
choosing appropriate values ofD we can select both regimes
of growth. The existence of these two different regimes can
be also confirmed by looking at the behavior of the tip ve-
locity as a function of the undercooling or the Péclet number.

We have looked at the shape of the studied dendrites by
computing the coordinatessX,Zd, as defined above following
Ref. [30]. Thus, only data of active branches are taken into
account, i.e., branches longer than any other closer to the tip.

Figure 3 shows the plot ofZ/R vs X/R for three different
values of the undercoolingsD=0.48,0.55,0.625d. The repre-
sentation for eachD contains data from eight different times,
which explains the slight dispersion of points. The existence
of two regimes for each undercooling can be distinguished in
Fig. 3, becoming more evident as the undercooling is in-
creased. For small values ofZ/R, similar behaviors are found
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for all the undercoolings. However, from a certain value of
Z/R, X/R depends very much onD. The transition region
between both regimes is not clear enough to permit the pre-
cise location of a crossover point in this figure.

In order to better characterize the two observed regimes,
Fig. 4 shows the log-log plot ofX/R vs Z/R for the smallest
and the largest undercoolings presented in Fig. 3.

It can be observed from Fig. 4 that a clear change in the
behavior ofX/R occurs in the regions ofZ/R around 80 and
40 for the case of small and large undercoolings, respec-
tively. This suggests that these regions separate two zones A
and B (see Fig. 4) where sidebranching is in different re-
gimes. ForDø0.48 it is difficult to distinguish these two
regimes because their slopes are very similar and it is not
possible to determine a transition region. When the under-
cooling is increased it is found that the transition region is
closer to the tip, which is consistent with the fact that at

larger undercoolings a more developed sidebranching is ob-
tained.

The behavior ofX/R in region A is not exactly the same
for all the considered undercoolings and is given by a
straight line in the log-log plot. By comparing data from
different undercoolings, it can be observed that the set of
points in region A lies at larger values ofX/R in the case of
largerD. This is consistent with observations reported in Ref.
[34,35], where the exponentsa calculated for each single
branch inx, ta, x being the branch length andt being the
time, were systematically smaller in branches grown in lower
undercooling conditions. According to this, at any value of
the undercooling and at smallZ/R, points in theX/RsZ/Rd
representation are less dispersed than at largeZ/R because in
the region closer to the tip it is still too soon to see the effects
of the difference in the exponenta of each branch. Thus, the

FIG. 2. Tip radius of the dendrite vs
undercooling.

FIG. 3. Plot ofZ/R vs X/R for the sidebranches that are larger
than any others closer to the tip. Symbols1, 3, andp correspond
to D=0.48, 0.55, and 0.625, respectively.

FIG. 4. Log-log plot ofX/R vs Z/R for the sidebranches that are
larger than any others closer to the tip. Symbols3 and 1 corre-
spond toD=0.48 and 0.65, respectively. In each case, regions A and
B are indicated.
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dispersion of points must increase withZ/R, as can also be
observed in Fig. 3.

The behavior ofX/R in region B depends onD. When
fitting the points of region B toX/R,sZ/Rda we found that
values ofa tended to 1 for increasingD (in fact, from D
ù0.525, variations ina are very small). In Fig. 5 is shown a
dendrite grown atD=0.6 where regions A and B can be
clearly distinguished. It can be observed that the angleg
formed by the line joining the tips of active sidebranches and
the axis of the main arm is smaller in the region A and,
typically for this range of undercoolings, its value is very
close to 45° in the region B. In other words, in region B
sidebranches grow at the same velocity that the main tip, i.e.,
grow as free dendrites.

The observation of these two regimes reveals a significant
difference with experiments presented in Ref.[30] (see Fig.
7 there), where only one regime was observed, and the angle
formed by the axis of the main arm and the line joining the
tips of the branches was always considerably smaller than
45°. This has to be related to the small values of undercool-
ing used in these experiments. The diffusion lengths associ-
ated with such a slow growth are very large, and even in the
region furthest from the tip considered in the experiments the
process of competition between branches was not finished
yet. On the contrary, diffusion length in simulations is short
due to the large undercoolings used. Branches can grow as
free dendrites as long as distances between active side-
branches(which increase with the distance to the tip due to
the competition process) are larger than the interaction scale
given by the diffusion length(which is reduced for larger
growth velocities). This results as the condition for the zone
B to be observed.

We have also measured the integral parameters(contour
length U and areaF) of our two-dimensional dendrites. As
shown in Fig. 1,U is the length of the contour of the dendrite

measured from the tip to a distanceZ along the axis, whileF
is one-half of the area of the dendrite. Both magnitudes have
been measured for different values of the dimensionless un-
dercooling. Considering the origin of coordinates at the tip,
the contour length and the area have been calculated from the
coordinates of the dendrite contour by

U = o
i=1

n

fsZi+1 − Zid2 + sXi+1 − Xid2g1/2 s3.1d

and

F = o
i=1

n
sXi+1 + Xid

2
sZi+1 − Zid, s3.2d

wheren corresponds to each distance to the tip for which we
calculatedU andF. The fact that the shape of sidebranches is
rather irregular and that their growth is not always perpen-
dicular to they axis makes it difficult to defineU andF in a
unique way everywhere as a function ofZ. In order to better
define both functions and following Ref.[30], we have only
consideredU and F for the values ofZ corresponding to
valleys between two neighboring sidebranches.

In Fig. 6 is shown the log-log plot of the normalized value
of the surface area as a function of the normalized value of
the distance to the tip of the dendrite atD=0.525 with data
taken at three different times. The same representation for
the rest of the considered undercoolings shows the same be-
havior and only points far from the tip at largerD are slightly
dispersed.

F /R2 vs sZ/Rd follows a power lawsa,bcd wherec is
always around 1.5, although a slight tendency to increase
with D is also observed. The value ofc found in the simula-
tions completely coincides with that found in Ref.[22] for
the growth of ammonium bromide crystals in two dimen-
sions. However, in Refs.[30,31] the representation of
F /R2sZ/Rd showed two regimes of power-law behavior with

FIG. 5. Dendrite grown atD=0.6 where regions A and B are
indicated. Angleg is always larger in regions B, where its value
tends to 45° as the undercooling is increased.

FIG. 6. Log-log plot ofF /R2 vs Z/R, F being the surface area,
for D=0.525.
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different exponents. In principle, we should not expect to
find the same exponent in our simulations, taking into con-
sideration that these experiments were three dimensional and
the projection area of the dendrite was measured. In this
case, the existence of different regimes near and far from the
tip of the dendrite was attributed to the different effect of
coarsening. This effect is also present in two dimensions, but
the fact that only one regime is observed in the plot ofF /R2

makes us conclude that the manifestation of the coarsening
effect is less dramatic in two than in three dimensions. As
regards the prefactor of the power-law fitting, it shows a
similar behavior to that of the tip radius, that is, it decreases
when the undercooling is increased up toD,0.55 and it
increases for largerD.

The behavior of the normalized contour length as a func-
tion of the distance to the tip forD=0.44 and 0.6 is shown in
Fig. 7. As happened in the plot of the shape of the dendrite,
the behavior changes after a transition region, the variation
of U /R being larger in the regions further down from the tip.

In the region closer to the tip, it is found thatU /R
,sZ/Rd1, which coincides with the behavior found in the
linear regime of experiments in Ref.[31]. As one should
expect, simulation results show that the linear region is larger
for smaller undercoolings. This was not observed in Ref.
[31], probably due to the employed range of undercoolings.

After the linear region, there is a transition region which
is followed by a nonlinear region, as was observed in the
experiments(see Fig. 5 in Ref.[31]). The transition region in
theU /RsZ/Rd plot is at smaller values ofZ/R than the tran-
sition region in theX/RsZ/Rd plot (Fig. 4) for all the con-
sidered undercoolings. In fact, the change in the behavior of
the contour length and that of the shape of the dendrite(the
envelope of it) provide different information of the side-
branching activity. In the case ofU, the linear and nonlinear
regimes are associated with low and high developed pertur-
bations of the interface, respectively. In the nonlinear region,

both active and nonactive branches contribute to the calcula-
tion of U. The enhanced growing of the active branches ob-
served in the nonlinear region is accompanied by coarsening,
a process in which the shrinking of the shorter branches re-
duces the total increasing of the contour length. As a result
any nonlinearity has an effect on the behavior ofU. On the
contrary the shapeX/RsZ/Rd is calculated through the active
branches only.X/RsZ/Rd is then associated with the effect
on the winning branches of competition, and with these
larger branches reaching colder regions and hence growing
faster. As a result, dispersions ofX/R values are rather large,
and the change of behavior more difficult to locate with a
tendency to occur inside the nonlinear region. The behavior
of U /R in the nonlinear region can be fitted by a power law
(see Fig. 7), although the values of the prefactor and the
exponent depend on the undercooling. As regards the prefac-
tor, its variation withD is very similar to that of the tip
radius, that is, it decreases up toD,0.55 (surface tension
dendrites) and it increases at larger undercoolings(kinetic
dendrites). The largest value of the prefactor is 0.101 forD
=0.44, which is very far from the value obtained in Ref.[31].
The divergence is probably related to the different ranges of
undercoolings used in simulations and experiments, but the
difference in dimensions could also play a role.

As regards the exponent in the fitting ofU /R, it increases
with the undercooling from 1.57 to 1.89. The value for small
D is very similar to the unique value(1.50) obtained in ex-
periments[31]. Again, the fact of having found many expo-
nents in the simulations and only one in the experiments
could be associated with the different ranges ofD used. It
implies that the diffusion length considerably varies between
simulations and experiments. The influence of the diffusion
length on the competition process between branches that
takes place in the nonlinear region determines the evolution
of branches and consequently the behavior of the contour
length.

By combining the results of the integral parameters in the
linear regime, it is found thatF / sURd,sZ/Rd0.5, which co-
incides with the experiments[31]. The same exponent in the
nonlinear regime varies from −0.07 to −0.39, differing very
much from the experiments. Thus, the similarities between
our results and the experimental ones in Ref.[31] remain
mainly in the linear region and in opposition to previous
studies[26,30], whereF /UR was found to be constant in the
nonlinear regime.

IV. CONCLUDING REMARKS

We have presented a numerical study of the shape and
sidebranching in regions at different distances from the tip of
a solidifying dendrite by means of a phase-field model with a
nonconserved noise term. We have characterized the dendrite
by using the integral parameters and we have focused on
dendrites grown in both the surface tension and kinetic
regimes.

The behavior of the shape of the dendrite has been found
to depend on the undercooling in the considered range. The
different diffusion lengths make the competition process be-
tween sidebranches differ and thus the final shape of the

FIG. 7. Log-log plot ofU /R vs Z/R, U being the contour length.
Symbols 3 and 1 correspond toD=0.44 and 0.6, respectively.
Lines indicate the fitting of points in each region.
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dendrite is affected. The region where the competition pro-
cess is taking place(A) and that where it is finished and
sidebranches evolve like free dendrites(B) have been clearly
distinguished in our simulation results. The behavior ob-
served in B is in agreement with theoretical predictions[16].
On the other hand, the main divergence with the available
experiments[30] is precisely the existence of two behaviors
in the nonlinear region. This discrepancy may be explained
by the different range of undercoolings considered in experi-
ments and simulations. In our simulations undercooling(and
hence tip velocity) is larger, so diffusion length is smaller
and the transition between both zones is expected to occur
closer to the tip, becoming observable. Note that additional
increasings of undercooling would reduce further the size of
zone A, which then could not be considered as a separate
scaling region. The area of the dendrite presented a unique
behavior for all the considered undercoolings. As one would
expect, it coincides with that of two-dimensional dendrites
[22], although there is a slight discrepancy with three-
dimensional dendrites, especially in regions far from the tip.
The behaviorF /R2,sZ/Rd1.5 found in our simulations is the
same as if the dendrites had a smooth parabolic shape. Thus,
we can conclude that the area of two-dimensional dendrites
is basically independent of the appearance and competition
of sidebranches, and that situation does not depend on the
diffusion length of the system.

The behavior of the contour length presents two differen-
tiated regimes in the linear and nonlinear regions. The expo-
nents found in the linear region are in agreement with ex-
periments [31], while the discrepancies appearing in the
nonlinear region could come from the range of undercool-
ings or the dimensionality.

We have found that the behavior of the contour length
changes in regions closer to the tip than the behavior of the
shape does. The picture is the following. As one moves down
from the tip, one first finds the linear region where branches

are created and eventually start to compete with each other.
Going further, the nonlinear region appears after a transition
region. The competition process is not only still taking place
there but it is probably in the highest point of activity. Not so
far away, its effects will be easily seen by the observation of
some already stopped sidebranches. During all this way we
have moved from the linear to the nonlinear region, but we
are still in the region we called A. Further down, the compe-
tition process between branches is finished and the surviving
ones have no opposition in their neighborhood to keep grow-
ing as free dendrites. We are then in region B.

Finally, we have considered both surface tension and ki-
netic dominated dendrites. Although the different behaviors
of the studied parameters are observed when the undercool-
ing is changed, this cannot be associated with the type of
dendrite. All we can assure is that the linear and A regions in
surface tension dendrites will always be larger than in the
kinetic ones, but only because of the larger diffusion length
and not because of the main mechanism which determines
them.

These results offer some insight into the understanding of
a fully developed dendrite, and in particular are of relevant
importance to distinguish between low and high undercool-
ing dendrites and two-dimensional and three-dimensional
dendrites. Finally we should remark that it would be of the
most great interest to have more experimental results avail-
able in the high undercooling regime, in particular character-
izing the nonlinear regions of the dendrite.
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