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Numerical study of the shape and integral parameters of a dendrite
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We present a numerical study of sidebranching of a solidifying dendrite by means of a phase-field model.
Special attention is paid to the regions far from the tip of the dendrite, where linear theories are no longer valid.
Two regions have been distinguished outside the linear region: a first one in which sidebranching is in a
competition process and a second one further down where branches behave as independent of each other. The
shape of the dendrite and integral parameters characterizing the whole dérairitaur length and area of the
dendritg have been computed and related to the characteristic tip radius for both surface tension and kinetic
dominated dendrites. Conclusions about the different behaviors observed and comparison with available ex-
periments and theoretical predictions are presented.
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I. INTRODUCTION means of its amplitude and wavelength. The growth of side-
] N ) o branches in the regions further down from the tip presents a
The generation of dendritic patterns arises in differentyehavior very different from that of the linear regime. One
nonequilibrium situationg1-8). The case of dendrites ap- finds first a region where branches compete, interacting
pearing during the solidification of a melt has long providedthrough the expelled heat. This gives rise to an irregular
an archetypical example of a pattern forming system, ingrowth of sidebranches which is difficult to characterize by
which the underlying physics is well known. Nonetheless,their amplitude and wavelength, since these quantities are no
from the theoretical point of view it has posed a number oflonger well defined outside the linear region. Experiments
nontrivial questions on the selection of the final growthcarried out with different substancg25,26,3Q have shown
mode, which in a large amount has driven the research on thigat sidebranching in this region is self-similar and that
effects of nonlinearities, anisotropies, and fluctuations irgeometrical parameters can be scaled by the tip raius
interfacial pattern formation. These questions also have amhis nonlinear region and its associated self-similar growth
applied interest, since solidification is one of the most comave their limits at distances to the tip of the order of the

mon methods to produce materials. It is well known that thediffusion length, i.e.le<1/Pe[16], where Pe is '_[he Péclet_
details of the dendritic patter@and in particular its associ- number. Further down, sidebranches behave like dendrites

ated scales appearing during growth determine the themselves. . . . o
microstructure of the grown solid, which in turn is respon- The nonlinear region has been intensively studied in ex-

; He e ; ; periments with xenon dendrites by Hurlimaenal. [26] and
;lrk()jlset;)tizsl[%r]ge degree for its finghechanical and electrical with succinonitrile dendrites by Li and Beckermafg9,31.

In this context increasing attention is focused on the shapln particular, the shape of the sidebranching envelope was

. : . ) §tudied in Ref.[30] by measuring the distancé from the
of the growing dendrite and on sidebranchiig-37, which axis of the dendrite to the tip of active sidebrancteefined

corresponds to the appearance and growth of secondang ihose pranches longer than all the other branches closer to
branches at both sides of the dendrite. Sidebranching activity, o tip) versus the distancg to the tip along the axis of the
shows different behaviors depending on the distance to th&endrite(see Fig. 1 Values ofX andZ were computed from

tip of the dendrite[16,34,33. In the zone closer to the tip e image of the dendrite projected on a plane, and far from
sidebranches are created as a convective instability of thg tip the relationX/R=0.668Z/R)*#°was obtained.

dendrite and grow linearly. Further down from the tip, side-
branches are usually much more developed and a compegj

tion process between branches takes place mediated by &, yiite as a whole and the nonlinearities of dendritic solidi-

interaction between their diffused fields. Much further fromg.asion - parameters characterizing independent parts of the

the tip, the competition has finished and the winner branChe.aendrite(e.g., amplitude and wavelength of the sidebranch-

grow as free dendrites while the growth of looser branches fhg) do not take into account the interaction of the side-
mh:\?lted. h ical12-2 d . 013 q branches through the diffusion field. Nonlinear effects such
. ?n}’]t eorgtlca[l —20 arr: e_xpﬁrlmegte[l A Ej_s:ju " . as, e.g., coarsening, make unclear which sidebranches should
les of the region close to the tip have been carried out Iyq i, ey ded in the measurement of the wavelength and which

recent years. A common point in the study of the linear re-thers should not. Instead, the contour lengththe projec-

gion has been the characterization of sidebranching bY|on areaF, and the volume of a dendrite appear to be more
appropriate.
It was found in the earlier experimental work of Refs.

*FAX: (34) 934137007; email address: ricard@fa.upc.es [26,3( that the projection area varied linearly with the con-

An alternative set of integral parameters was proposed in
efs.[26,30 in order to describe the complex shape of a
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600 ' ' ' ' ' In this paper we present a study of sidebranching by
means of a phase-field model for moving solid-liquid inter-

free growing sidebranches far from the tip, and, on the other
hand, to reach the kinetic regime of growth.

This paper is organized as follows. In Sec. Il we present
the classical sharp-interface model that characterizes a solidi-
fication system, the phase-field model, and the numerical
procedure used in this work. In Sec. Ill we present the results
— . of simulations. We particularize the effect of varying under-

400 500 600 cooling, and the differences between different zones of the
dendrite. Detailed characterization of the whole dendrite is
h%erformed by its shape and by computing the integral param-
eters. Finally, concluding remarks are presented in Sec. IV.
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faces[38—44. We consider sidebranching generated by se-
5001 lective amplification of fluctuations near the tip of a free
growing dendrite. In particular, we focus on the nonlinear
zone, including both the region where competition occurs
00t and further down where sidebranches behave as free growing
Z dendrites. Characterization is performed by working out the
y shape of the dendrite by means of its envelope, and calculat-
200k ing the integral parameters. We have varied undercooling in
a large range, in particular reaching relatively high values of
the undercooling. This has permitted us, on the one hand,
00 due to reduction in diffusion length, to access the region of
200 3

1

00 x
FIG. 1. Example of dendrite obtained &+0.575. Distance&

and X of active sidebranches used to characterize the shape of tl

dendrite, and the integral parameters contour lefigihand surface

area(F), are indicated.

. e Il. MODEL AND NUMERICAL PROCEDURE
tour length and the corresponding slopk satisfiedM/R

=const. Similar results were found in early simulati¢&é], The free solidification of a pure substance can be de-
but this was shown to be an effect of reflecting boundaryscribed by the sharp-interface mod&], which relies on the
conditions strongly affecting the dendrit87]. This suggests heat diffusion equation together with two boundary condi-
that the experimental observations could have been affectetbns at the interface, namely, heat conservation and the
by the diffusion field of other close dendrites or other grow-Gibbs-Thomsor{local equilibrium equation:
ing morphologies. In more recent experimerj@l] and nu-
merical [37] work it was obtained thaF/(UR) was not a JaT =DV2T, (2.1)
constant in the nonlinear regime.

The projection area showed two different behaviors
[F/R?=0.847Z/R)'5%® for Z/R<30 and F/R? Lu,=Dcy[(VaDs— (VoL (2.2
=0.578Z/R)>"2for Z/R>30] in three-dimensional succino-
nitrile dendrites[31]. However, in two-dimensional ammo- Tu
nium bromide dendritef22], the areaF was found to vary Tinterface™ Tm ~ T[U(G) +0"(0)]x—vB(0). (2.3
over three orders of magnitude 2% as would have hap-
pened if the dendrites had had a smooth parabolic shape. Ag these equations is the temperaturély, being the melting
regards the variation of the contour length with the distancene), D is the diffusion coefficien(D=k/c,, k being the heat
to the tip, only data corresponding to three-dimensionatonductivity andc, the specific heat per unit volume. is
dendrites are available, where two behaviors are distinthe latent heat per unit volume, is the normal velocity of
guished [U/R=0.887Z/R)*1% for Z/R<20 and U/R the interface,V, is the normal derivative at the interface
=0.378Z/R)*0for Z/R>40] [31]. (SandL referring to solid and liquid, respectivelyo(6) is

An additional question is whether strong undercoolingthe anisotropic surface tensigwhered is the angle between
can produce qualitative changes in sidebranching charactehie normal to the interface and some crystallographic)axis
istics. It is well known that on increasing undercooling theand « is the local curvature of the interfacgs(6) is
growth can switch from a regime dominated by surface tenan anisotropic kinetic term, introduced into the Gibbs-
sion to a regime dominated by kinetic effects. This was al-Thomson equatiofi2.3) to account for a linear nonequilib-
ready predicted theoretically in Rg#]. When anisotropies rium correction.
of both effects favor different directions, changes in the The results of simulations presented below have been ob-
growth directions of both dendrite and branches occur oriained by means of a phase-field model. These kinds of
changing the undercooling. Even if these anisotropies are imodel have received increased attention during recent years
the same direction, the behavior of the tip radius and velocity44]. One of their main features is the introduction of an
can present abrupt changes. Numerical evidence of suckdditional nonconserved scalar order parameter or phase
changes can be found in Ré45]. field ¢, whose time evolution equation is coupled with the
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heat diffusion equation through a source term in order to takéas been taken to employ large enough system sizes to avoid
into account the boundary conditions at the interface. Thany influence of boundary conditions on the results presented
phase field takes constant values in each of the bulk phasésroughout this paper.
(in our caseg=0 in the solid and=1 in the liquid chang- We have used a set of phase-field model parameters that
ing continuously between them over a transition layer, thegives rise to a growing needle without sidebranching when
interfacial thickness. The equations of the model are then no noise(1=0) is added to the simulations. This assures us
constructed in such a way that they converge to the sharghat the sidebranching observed whe# 0 is not due to
interface dynamics of Eq$2.1), (2.2), and(2.3) in the limit  numerical noise. The fixed parameters for all the simulations
of vanishinge. Hence this parameter controls the conver-have beem=320,y=0.045m=16, ande=3.75X 10°3. The
gence to the sharp-interface limit. value of A has been varied in the range 0.44-0.65. The noise
The corresponding equations for the time evolution of theamplitude was kept constait=16) in all the simulations
phase field and the dimensionless temperature can be writtefhd the time and spatial discretizations used were1.25
in the following form[39]: X 104 and Ax=0.0125.
Under these conditions, the obtained morphologies were
b _ 1 dendrites with three main arms growing from the seed, one
627(0)5 =¢(1- ¢)(¢ oF 30eBAUG(1 ~ ¢)) in the vertical(y) direction and two in the horizont#k) one.
We have focused on the sidebranches which grew perpen-
- ezi[n(é’)n’(@)a—(ﬁ] + ezi[n(g) 7]'(9)‘?_"5} dicular to the vertical arm. Thus, in order to get rid of the
2 ay ay IX influence of the diffusion field of the horizontal arms on
2 these sidebranches, we have been forced to run long simula-
+EVIFOV 4, 2.9 tions and only observe an area at a fixed distance to the tip.
In order to avoid working with unnecessarily large systems,
au 1 dp we have performed periodic shifts of the complete system, a
a X(30¢’2 ~60¢°+ 30¢4)E =V2u+ gixy.), practice that has been checked to not affect the results of the
2.5 simulation. In Fig. 1 we show an example of a typical grown
: dendrite.

whereu(r ,t) is the diffusion field and\=c,AT/L is the di-
mensionless undercooling. Lengths are scaled by some arbi- ll. RESULTS AND DISCUSSION
trary reference lengt, while times are scaled by?/D. In

these equationg is the angle between the axis and the

gradient of the phase field( 6) = o(6)/ o(0) is the anisotropy b . _ . .

) o y computingR= ¢,/ ¢, at the tip of the dendrite89]. The
of the sur_face ten5|on(0).|s given by_(CPp/LdO) 70)B0), aim was to identi?y dyi¥ferent regimes of growth in a large
so the anisotropy of the kinetic term is given #y))/ 7(6). B range ofA. In our case, anisotropy is only considered in

is equal t0\2w/12d, and dy=c,Tyo(0)/L? is the capillary  gyrface tension. Thus, when the undercooling is changed no
length. change in growth direction is expected although the behavior
A source of fluctuations is introduced through the additivegf the tip radius and velocity may vary. In particular in the
term ¢ in the heat equation. It was demonstraf@@] that  syrface tension controlled regime the tip radius should de-
sidebranching induced by this kind of noise qualitatively re-crease(together with increase of tip velocityy increasing
produces the characteristics of t{termodynamicalinter-  yndercooling. On the contrary in the kinetic regime, with an
nal noise, which makes it appropriate for the study of sidejsotropic kinetic term, one expects larger tip radius at higher
branching. In our two-dimensional simulations the noiseye|ocities. In Fig. 2 is shown the behavior of the tip radius as
term is evaluated at each céil j) of lateral sizeAx aslr, g function of the undercooling. A change of the behavior
where| denotes the amplitude of the noise, andis an  around the value 0.575 can be clearly observed. Thus, by
uncorrelated uniform random number in the intervalchoosing appropriate values afwe can select both regimes
[-0.5,0.3. The phase-field model equations have beemf growth. The existence of these two different regimes can
solved on rectangular lattices using first-order finite differ-be also confirmed by looking at the behavior of the tip ve-
ences on a uniform grid with mesh spaciag. An explicit  |ocity as a function of the undercooling or the Péclet number.
time-differencing scheme has been used to solve the equation We have looked at the shape of the studied dendrites by
for ¢, whereas for theu equation the alternating-direction computing the coordinatéX, Z), as defined above following
implicit method was chosep6]. The kinetic term has been Ref. [30]. Thus, only data of active branches are taken into
taken as isotropic, which leads t06) =mx»(6) with constant  account, i.e., branches longer than any other closer to the tip.
m. A fourfold surface tension anisotropy»(6)=1 Figure 3 shows the plot /R vs X/R for three different
+vycoq46) has been considered. values of the undercoolingh=0.48,0.55,0.626 The repre-
The growth morphologies have been obtained by setting gentation for eaciA contains data from eight different times,
small vertical seed¢=0,u=0) in the center of the bottom which explains the slight dispersion of points. The existence
side of the system and imposinf=1 andu=-1 on the rest of two regimes for each undercooling can be distinguished in
of the system. Symmetric boundary conditions #andu  Fig. 3, becoming more evident as the undercooling is in-
have been used on the four sides of the system. Special cateeased. For small values #fR, similar behaviors are found

A first series of simulations was performed exploring the
effect of undercooling on the tip radius. This was measured
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for all the undercoolings. However, from a certain value oflarger undercoolings a more developed sidebranching is ob-
ZIR, X/R depends very much oA. The transition region tained.
between both regimes is not clear enough to permit the pre- The behavior 0ofiX/R in region A is not exactly the same
cise location of a crossover point in this figure. for all the considered undercoolings and is given by a

In order to better characterize the two observed regimestraight line in the log-log plot. By comparing data from
Fig. 4 shows the log-log plot of/R vs Z/R for the smallest different undercoolings, it can be observed that the set of
and the largest undercoolings presented in Fig. 3. points in region A lies at larger values ¥#R in the case of

It can be observed from Fig. 4 that a clear change in thdargerA. This is consistent with observations reported in Ref.
behavior ofX/R occurs in the regions d/R around 80 and [34,35, where the exponenta calculated for each single
40 for the case of small and large undercoolings, respedsranch inx~t?, x being the branch length artdbeing the
tively. This suggests that these regions separate two zonesthne, were systematically smaller in branches grown in lower
and B (see Fig. 4 where sidebranching is in different re- undercooling conditions. According to this, at any value of
gimes. ForA<0.48 it is difficult to distinguish these two the undercooling and at small'R, points in theX/R(Z/R)
regimes because their slopes are very similar and it is natepresentation are less dispersed than at Afgebecause in
possible to determine a transition region. When the underthe region closer to the tip it is still too soon to see the effects
cooling is increased it is found that the transition region isof the difference in the exponeatof each branch. Thus, the
closer to the tip, which is consistent with the fact that at
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FIG. 4. Log-log plot ofX/R vs Z/R for the sidebranches that are

FIG. 3. Plot ofZ/R vs X/R for the sidebranches that are larger larger than any others closer to the tip. Symbglsand + corre-
than any others closer to the tip. Symbels X, and* correspond spond toA=0.48 and 0.65, respectively. In each case, regions A and
to A=0.48, 0.55, and 0.625, respectively. B are indicated.
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FIG. 5. Dendrite grown ah=0.6 where regions A and B are
indicated. Angley is always larger in regions B, where its value
tends to 45° as the undercooling is increased. measured from the tip to a distanZealong the axis, whilé&

is one-half of the area of the dendrite. Both magnitudes have
dispersion of points must increase wifliR, as can also be been measured for different values of the dimensionless un-
observed in Fig. 3. dercooling. Considering the origin of coordinates at the tip,

The behavior ofX/R in region B depends od. When  the contour length and the area have been calculated from the
fitting the points of region B t&X/R~ (Z/R)* we found that  coordinates of the dendrite contour by
values ofa tended to 1 for increasingd (in fact, from A
=0.525, variations irx are very smajl In Fig. 5 is shown a
dendrite grown atA=0.6 where regions A and B can be
clearly distinguished. It can be observed that the angle
formed by the line joining the tips of active sidebranches andand
the axis of the main arm is smaller in the region A and, N
typically for this range of undercoolings, its value is very F=S (Xis1 + %)

i=1

U= [(Zieg = Z))2+ (Xiag — X)) 2]H2 (3.1
i=1

close to 45° in the region B. In other words, in region B 2 (Ziv1=Z), (3.2
sidebranches grow at the same velocity that the main tip, i.e.,
grow as free dendrites. wheren corresponds to each distance to the tip for which we
The observation of these two regimes reveals a significargalculatedJ andF. The fact that the shape of sidebranches is
difference with experiments presented in R&0] (see Fig. rather irregular and that their growth is not always perpen-
7 therg, where only one regime was observed, and the angléicular to they axis makes it difficult to defin& andF in a
formed by the axis of the main arm and the line joining theunique way everywhere as a functionafin order to better
tips of the branches was always considerably smaller thagefine both functions and following ReB0], we have only
45°. This has to be related to the small values of undercoolconsideredU and F for the values ofZ corresponding to
ing used in these experiments. The diffusion lengths associalleys between two neighboring sidebranches.
ated with such a slow growth are very large, and even in the In Fig. 6 is shown the log-log plot of the normalized value
region furthest from the tip considered in the experiments th@f the surface area as a function of the normalized value of
process of competition between branches was not finisheie distance to the tip of the dendrite &+0.525 with data
yet. On the contrary, diffusion length in simulations is shorttaken at three different times. The same representation for
due to the large undercoolings used. Branches can grow dBe rest of the considered undercoolings shows the same be-
free dendrites as long as distances between active sidBavior and only points far from the tip at larg&rare slightly
branchegwhich increase with the distance to the tip due todispersed.
the competition procesre larger than the interaction scale  F/R? vs (Z/R) follows a power law(a~b®) wherec is
given by the diffusion lengtiiwhich is reduced for larger always around 1.5, although a slight tendency to increase
growth velocities. This results as the condition for the zone with A is also observed. The value offound in the simula-
B to be observed. tions completely coincides with that found in R¢22] for
We have also measured the integral paramei@oatour  the growth of ammonium bromide crystals in two dimen-
length U and areaF) of our two-dimensional dendrites. As sions. However, in Refs[30,3] the representation of
shown in Fig. 1U is the length of the contour of the dendrite F/R*(Z/R) showed two regimes of power-law behavior with
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10000 ' both active and nonactive branches contribute to the calcula-
tion of U. The enhanced growing of the active branches ob-
served in the nonlinear region is accompanied by coarsening,
a process in which the shrinking of the shorter branches re-
duces the total increasing of the contour length. As a result
any nonlinearity has an effect on the behaviolbfOn the
contrary the shap¥/R(Z/R) is calculated through the active
branches onlyX/R(Z/R) is then associated with the effect
on the winning branches of competition, and with these
larger branches reaching colder regions and hence growing
faster. As a result, dispersions XfR values are rather large,
and the change of behavior more difficult to locate with a
tendency to occur inside the nonlinear region. The behavior
of U/R in the nonlinear region can be fitted by a power law
(see Fig. 7, although the values of the prefactor and the
exponent depend on the undercooling. As regards the prefac-
10 . tor, its variation withA is very similar to that of the tip

10 100 1000 radius, that is, it decreases up 4o~ 0.55 (surface tension

R dendrite$ and it increases at larger undercoolinggnetic

dendrite$. The largest value of the prefactor is 0.101 for
=0.44, which is very far from the value obtained in R&f1].
The divergence is probably related to the different ranges of
undercoolings used in simulations and experiments, but the
different exponents. In principle, we should not expect todifference in dimensions could also play a role.
find the same exponent in our simulations, taking into con- As regards the exponent in the fitting O R, it increases
sideration that these experiments were three dimensional awdth the undercooling from 1.57 to 1.89. The value for small
the projection area of the dendrite was measured. In thid is very similar to the unique valu@.50 obtained in ex-
case, the existence of different regimes near and far from theeriments[31]. Again, the fact of having found many expo-
tip of the dendrite was attributed to the different effect of nents in the simulations and only one in the experiments
coarsening. This effect is also present in two dimensions, butould be associated with the different rangesdotised. It
the fact that only one regime is observed in the ploE6R>  implies that the diffusion length considerably varies between
makes us conclude that the manifestation of the coarseningimulations and experiments. The influence of the diffusion
effect is less dramatic in two than in three dimensions. Adength on the competition process between branches that
regards the prefactor of the power-law fitting, it shows atakes place in the nonlinear region determines the evolution
similar behavior to that of the tip radius, that is, it decrease®f branches and consequently the behavior of the contour
when the undercooling is increased up 46<0.55 and it length.
increases for largeh. By combining the results of the integral parameters in the

The behavior of the normalized contour length as a funciinear regime, it is found tha/(UR) ~ (Z/R)%5, which co-
tion of the distance to the tip fak=0.44 and 0.6 is shown in incides with the experimen{81]. The same exponent in the
Fig. 7. As happened in the plot of the shape of the dendritenonlinear regime varies from —0.07 to —0.39, differing very
the behavior changes after a transition region, the variatiomuch from the experiments. Thus, the similarities between
of U/R being larger in the regions further down from the tip. our results and the experimental ones in R&fl] remain

In the region closer to the tip, it is found that/R  mainly in the linear region and in opposition to previous
~(ZIR)%, which coincides with the behavior found in the studies[26,30, whereF/UR was found to be constant in the
linear regime of experiments in Ref31]. As one should nonlinear regime.
expect, simulation results show that the linear region is larger
for smaller undercoolings. This was not observed in Ref.
[31], probably due to the employed range of undercoolings.

After the linear region, there is a transition region which  We have presented a numerical study of the shape and
is followed by a nonlinear region, as was observed in thesidebranching in regions at different distances from the tip of
experimentgsee Fig. 5 in Ref{31]). The transition region in  a solidifying dendrite by means of a phase-field model with a
the U/R(Z/R) plot is at smaller values df/R than the tran- nonconserved noise term. We have characterized the dendrite
sition region in theX/R(Z/R) plot (Fig. 4) for all the con- by using the integral parameters and we have focused on
sidered undercoolings. In fact, the change in the behavior afendrites grown in both the surface tension and kinetic
the contour length and that of the shape of the dendllite ~ regimes.
envelope of if provide different information of the side- The behavior of the shape of the dendrite has been found
branching activity. In the case &f, the linear and nonlinear to depend on the undercooling in the considered range. The
regimes are associated with low and high developed pertudifferent diffusion lengths make the competition process be-
bations of the interface, respectively. In the nonlinear regionfween sidebranches differ and thus the final shape of the

1000

UR

100 [

FIG. 7. Log-log plot ofU/Rvs Z/R, U being the contour length.
Symbols X and + correspond toA=0.44 and 0.6, respectively.
Lines indicate the fitting of points in each region.

IV. CONCLUDING REMARKS
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dendrite is affected. The region where the competition proare created and eventually start to compete with each other.
cess is taking placéA) and that where it is finished and Going further, the nonlinear region appears after a transition
sidebranches evolve like free dendrit have been clearly region. The competition process is not only still taking place
distinguished in our simulation results. The behavior ob-there but it is probably in the highest point of activity. Not so
served in B is in agreement with theoretical predictifh®].  far away, its effects will be easily seen by the observation of
On the Other hand, the main diVergence W|th the aVailabl%ome a|ready Stopped sidebranches. During all this Way we
experimentg30] is precisely the existence of two behaviors have moved from the linear to the nonlinear region, but we
in the nonlinear region. This discrepancy may be explainedye sjll in the region we called A. Further down, the compe-
by the different range of undercoolings considered in experigiion process between branches is finished and the surviving
ments a_nd S|mullat|'ons. In our sm_wula'qons under_coo(mgj ones have no opposition in their neighborhood to keep grow-
hence tip velocity is larger, so diffusion length is smaller ing as free dendrites. We are then in region B.

and the transition between both zones is expected to occur Finally, we have considered both surface tension and ki-

closer to the tip, becoming observable. Note that additional etic dominated dendrites. Although the different behaviors

increasings of undercooling would reduce further the size o f the studied parameters are observed when the undercool-

zone A, which then could not be considered as a SEPATA(F i changed, this cannot be associated with the type of
scaling region. The area of the dendrite presented a uniqu 9 ged, yp

behavior for all the considered undercoolings. As one woul
expect, it coincides with that of two-dimensional dendrites
[22], although there is a slight discrepancy with three-
dimensional dendrites, especially in regions far from the tip. h
The behavioF/R?~ (Z/R)1° found in our simulations is the them.

same as if the dendrites had a smooth parabolic shape. Thus These results offer some insight into the understanding of
P . pe. 1 nus fully developed dendrite, and in particular are of relevant
we can conclude that the area of two-dimensional dendrite

ﬁ;nportance to distinguish between low and high undercool-

is basically independent of the appearance and compet|t|0|rﬁg dendrites and two-dimensional and three-dimensional

O.f S|d.ebranches, and that situation does not depend on ﬂbeendrites. Finally we should remark that it would be of the
diffusion length of the system.

most great interest to have more experimental results avail-

The behavior of the contour length presents two dlfferen'able in the high undercooling regime, in particular character-

tiated regimes in the linear and nonlinear regions. The expol-Zing the nonlinear regions of the dendrite.

nents found in the linear region are in agreement with ex-

endrite. All we can assure is that the linear and A regions in
surface tension dendrites will always be larger than in the
kinetic ones, but only because of the larger diffusion length
and not because of the main mechanism which determines

periments[31], while the discrepancies appearing in the ACKNOWLEDGMENTS
nonlinear region could come from the range of undercool-
ings or the dimensionality. The authors acknowledge discussions with Y. Couder.
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